This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A neighborhood of a limit point of a function contains the image of a filter element. (Contributed by Jeff Hankins, 11-Nov-2009) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | flfneii.x | |- X = U. J |
|
| Assertion | flfneii | |- ( ( ( J e. Top /\ L e. ( Fil ` Y ) /\ F : Y --> X ) /\ A e. ( ( J fLimf L ) ` F ) /\ N e. ( ( nei ` J ) ` { A } ) ) -> E. s e. L ( F " s ) C_ N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flfneii.x | |- X = U. J |
|
| 2 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` X ) ) |
| 3 | flfnei | |- ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> ( A e. ( ( J fLimf L ) ` F ) <-> ( A e. X /\ A. n e. ( ( nei ` J ) ` { A } ) E. s e. L ( F " s ) C_ n ) ) ) |
|
| 4 | 2 3 | syl3an1b | |- ( ( J e. Top /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> ( A e. ( ( J fLimf L ) ` F ) <-> ( A e. X /\ A. n e. ( ( nei ` J ) ` { A } ) E. s e. L ( F " s ) C_ n ) ) ) |
| 5 | 4 | simplbda | |- ( ( ( J e. Top /\ L e. ( Fil ` Y ) /\ F : Y --> X ) /\ A e. ( ( J fLimf L ) ` F ) ) -> A. n e. ( ( nei ` J ) ` { A } ) E. s e. L ( F " s ) C_ n ) |
| 6 | 5 | 3adant3 | |- ( ( ( J e. Top /\ L e. ( Fil ` Y ) /\ F : Y --> X ) /\ A e. ( ( J fLimf L ) ` F ) /\ N e. ( ( nei ` J ) ` { A } ) ) -> A. n e. ( ( nei ` J ) ` { A } ) E. s e. L ( F " s ) C_ n ) |
| 7 | sseq2 | |- ( n = N -> ( ( F " s ) C_ n <-> ( F " s ) C_ N ) ) |
|
| 8 | 7 | rexbidv | |- ( n = N -> ( E. s e. L ( F " s ) C_ n <-> E. s e. L ( F " s ) C_ N ) ) |
| 9 | 8 | rspcv | |- ( N e. ( ( nei ` J ) ` { A } ) -> ( A. n e. ( ( nei ` J ) ` { A } ) E. s e. L ( F " s ) C_ n -> E. s e. L ( F " s ) C_ N ) ) |
| 10 | 9 | 3ad2ant3 | |- ( ( ( J e. Top /\ L e. ( Fil ` Y ) /\ F : Y --> X ) /\ A e. ( ( J fLimf L ) ` F ) /\ N e. ( ( nei ` J ) ` { A } ) ) -> ( A. n e. ( ( nei ` J ) ` { A } ) E. s e. L ( F " s ) C_ n -> E. s e. L ( F " s ) C_ N ) ) |
| 11 | 6 10 | mpd | |- ( ( ( J e. Top /\ L e. ( Fil ` Y ) /\ F : Y --> X ) /\ A e. ( ( J fLimf L ) ` F ) /\ N e. ( ( nei ` J ) ` { A } ) ) -> E. s e. L ( F " s ) C_ N ) |