This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem falimd

Description: The truth value F. implies anything. (Contributed by Mario Carneiro, 9-Feb-2017)

Ref Expression
Assertion falimd
|- ( ( ph /\ F. ) -> ps )

Proof

Step Hyp Ref Expression
1 falim
 |-  ( F. -> ps )
2 1 adantl
 |-  ( ( ph /\ F. ) -> ps )