This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem falbifal

Description: A <-> identity. (Contributed by Anthony Hart, 22-Oct-2010) (Proof shortened by Andrew Salmon, 13-May-2011)

Ref Expression
Assertion falbifal
|- ( ( F. <-> F. ) <-> T. )

Proof

Step Hyp Ref Expression
1 biid
 |-  ( F. <-> F. )
2 1 bitru
 |-  ( ( F. <-> F. ) <-> T. )