This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem f1rel

Description: A one-to-one onto mapping is a relation. (Contributed by NM, 8-Mar-2014)

Ref Expression
Assertion f1rel
|- ( F : A -1-1-> B -> Rel F )

Proof

Step Hyp Ref Expression
1 f1fn
 |-  ( F : A -1-1-> B -> F Fn A )
2 fnrel
 |-  ( F Fn A -> Rel F )
3 1 2 syl
 |-  ( F : A -1-1-> B -> Rel F )