This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential uniqueness "pick" showing wff equivalence. (Contributed by NM, 25-Nov-1994) (Proof shortened by Wolf Lammen, 27-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eupickb | |- ( ( E! x ph /\ E! x ps /\ E. x ( ph /\ ps ) ) -> ( ph <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupick | |- ( ( E! x ph /\ E. x ( ph /\ ps ) ) -> ( ph -> ps ) ) |
|
| 2 | 1 | 3adant2 | |- ( ( E! x ph /\ E! x ps /\ E. x ( ph /\ ps ) ) -> ( ph -> ps ) ) |
| 3 | exancom | |- ( E. x ( ph /\ ps ) <-> E. x ( ps /\ ph ) ) |
|
| 4 | eupick | |- ( ( E! x ps /\ E. x ( ps /\ ph ) ) -> ( ps -> ph ) ) |
|
| 5 | 3 4 | sylan2b | |- ( ( E! x ps /\ E. x ( ph /\ ps ) ) -> ( ps -> ph ) ) |
| 6 | 5 | 3adant1 | |- ( ( E! x ph /\ E! x ps /\ E. x ( ph /\ ps ) ) -> ( ps -> ph ) ) |
| 7 | 2 6 | impbid | |- ( ( E! x ph /\ E! x ps /\ E. x ( ph /\ ps ) ) -> ( ph <-> ps ) ) |