This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The elements of the quotient set of an equivalence relation are disjoint (cf. eqvreldisj2 , eqvreldisj3 ). (Contributed by Mario Carneiro, 10-Dec-2016) (Revised by Peter Mazsa, 3-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqvreldisj1 | |- ( EqvRel R -> A. x e. ( A /. R ) A. y e. ( A /. R ) ( x = y \/ ( x i^i y ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( EqvRel R /\ ( x e. ( A /. R ) /\ y e. ( A /. R ) ) ) -> EqvRel R ) |
|
| 2 | simprl | |- ( ( EqvRel R /\ ( x e. ( A /. R ) /\ y e. ( A /. R ) ) ) -> x e. ( A /. R ) ) |
|
| 3 | simprr | |- ( ( EqvRel R /\ ( x e. ( A /. R ) /\ y e. ( A /. R ) ) ) -> y e. ( A /. R ) ) |
|
| 4 | 1 2 3 | qsdisjALTV | |- ( ( EqvRel R /\ ( x e. ( A /. R ) /\ y e. ( A /. R ) ) ) -> ( x = y \/ ( x i^i y ) = (/) ) ) |
| 5 | 4 | ralrimivva | |- ( EqvRel R -> A. x e. ( A /. R ) A. y e. ( A /. R ) ( x = y \/ ( x i^i y ) = (/) ) ) |