This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem eqvrelcoss0

Description: The cosets by the null class are in equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2024)

Ref Expression
Assertion eqvrelcoss0
|- EqvRel ,~ (/)

Proof

Step Hyp Ref Expression
1 disjALTV0
 |-  Disj (/)
2 1 disjimi
 |-  EqvRel ,~ (/)