This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 31-Jul-1994) (Proof shortened by Wolf Lammen, 15-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqabcri.1 | |- { x | ph } = A |
|
| Assertion | eqabcri | |- ( ph <-> x e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabcri.1 | |- { x | ph } = A |
|
| 2 | 1 | eqcomi | |- A = { x | ph } |
| 3 | 2 | eqabri | |- ( x e. A <-> ph ) |
| 4 | 3 | bicomi | |- ( ph <-> x e. A ) |