This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of a pair of sets is one or the other of them, and conversely. Exercise 1 of TakeutiZaring p. 15. (Contributed by NM, 14-Oct-2005) Generalize from sethood hypothesis to sethood antecedent. (Revised by BJ, 25-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpr2g | |- ( ( B e. V /\ C e. W ) -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( A e. { B , C } -> A e. _V ) |
|
| 2 | 1 | a1i | |- ( ( B e. V /\ C e. W ) -> ( A e. { B , C } -> A e. _V ) ) |
| 3 | elex | |- ( B e. V -> B e. _V ) |
|
| 4 | eleq1a | |- ( B e. _V -> ( A = B -> A e. _V ) ) |
|
| 5 | 3 4 | syl | |- ( B e. V -> ( A = B -> A e. _V ) ) |
| 6 | elex | |- ( C e. W -> C e. _V ) |
|
| 7 | eleq1a | |- ( C e. _V -> ( A = C -> A e. _V ) ) |
|
| 8 | 6 7 | syl | |- ( C e. W -> ( A = C -> A e. _V ) ) |
| 9 | 5 8 | jaao | |- ( ( B e. V /\ C e. W ) -> ( ( A = B \/ A = C ) -> A e. _V ) ) |
| 10 | elprg | |- ( A e. _V -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) ) |
|
| 11 | 10 | a1i | |- ( ( B e. V /\ C e. W ) -> ( A e. _V -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) ) ) |
| 12 | 2 9 11 | pm5.21ndd | |- ( ( B e. V /\ C e. W ) -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) ) |