This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reconstruction of a nested ordered pair in terms of its ordered pair components. (Contributed by Zhi Wang, 27-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eloprab1st2nd | |- ( A e. { <. <. x , y >. , z >. | ph } -> A = <. <. ( 1st ` ( 1st ` A ) ) , ( 2nd ` ( 1st ` A ) ) >. , ( 2nd ` A ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 | |- ( w = A -> ( w = <. <. x , y >. , z >. <-> A = <. <. x , y >. , z >. ) ) |
|
| 2 | 1 | anbi1d | |- ( w = A -> ( ( w = <. <. x , y >. , z >. /\ ph ) <-> ( A = <. <. x , y >. , z >. /\ ph ) ) ) |
| 3 | 2 | 3exbidv | |- ( w = A -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) <-> E. x E. y E. z ( A = <. <. x , y >. , z >. /\ ph ) ) ) |
| 4 | df-oprab | |- { <. <. x , y >. , z >. | ph } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) } |
|
| 5 | 3 4 | elab2g | |- ( A e. { <. <. x , y >. , z >. | ph } -> ( A e. { <. <. x , y >. , z >. | ph } <-> E. x E. y E. z ( A = <. <. x , y >. , z >. /\ ph ) ) ) |
| 6 | 5 | ibi | |- ( A e. { <. <. x , y >. , z >. | ph } -> E. x E. y E. z ( A = <. <. x , y >. , z >. /\ ph ) ) |
| 7 | id | |- ( A = <. <. x , y >. , z >. -> A = <. <. x , y >. , z >. ) |
|
| 8 | opex | |- <. x , y >. e. _V |
|
| 9 | vex | |- z e. _V |
|
| 10 | 8 9 | op1std | |- ( A = <. <. x , y >. , z >. -> ( 1st ` A ) = <. x , y >. ) |
| 11 | 10 | fveq2d | |- ( A = <. <. x , y >. , z >. -> ( 1st ` ( 1st ` A ) ) = ( 1st ` <. x , y >. ) ) |
| 12 | vex | |- x e. _V |
|
| 13 | vex | |- y e. _V |
|
| 14 | 12 13 | op1st | |- ( 1st ` <. x , y >. ) = x |
| 15 | 11 14 | eqtr2di | |- ( A = <. <. x , y >. , z >. -> x = ( 1st ` ( 1st ` A ) ) ) |
| 16 | 10 | fveq2d | |- ( A = <. <. x , y >. , z >. -> ( 2nd ` ( 1st ` A ) ) = ( 2nd ` <. x , y >. ) ) |
| 17 | 12 13 | op2nd | |- ( 2nd ` <. x , y >. ) = y |
| 18 | 16 17 | eqtr2di | |- ( A = <. <. x , y >. , z >. -> y = ( 2nd ` ( 1st ` A ) ) ) |
| 19 | 15 18 | opeq12d | |- ( A = <. <. x , y >. , z >. -> <. x , y >. = <. ( 1st ` ( 1st ` A ) ) , ( 2nd ` ( 1st ` A ) ) >. ) |
| 20 | 8 9 | op2ndd | |- ( A = <. <. x , y >. , z >. -> ( 2nd ` A ) = z ) |
| 21 | 20 | eqcomd | |- ( A = <. <. x , y >. , z >. -> z = ( 2nd ` A ) ) |
| 22 | 19 21 | opeq12d | |- ( A = <. <. x , y >. , z >. -> <. <. x , y >. , z >. = <. <. ( 1st ` ( 1st ` A ) ) , ( 2nd ` ( 1st ` A ) ) >. , ( 2nd ` A ) >. ) |
| 23 | 7 22 | eqtrd | |- ( A = <. <. x , y >. , z >. -> A = <. <. ( 1st ` ( 1st ` A ) ) , ( 2nd ` ( 1st ` A ) ) >. , ( 2nd ` A ) >. ) |
| 24 | 23 | adantr | |- ( ( A = <. <. x , y >. , z >. /\ ph ) -> A = <. <. ( 1st ` ( 1st ` A ) ) , ( 2nd ` ( 1st ` A ) ) >. , ( 2nd ` A ) >. ) |
| 25 | 24 | exlimiv | |- ( E. z ( A = <. <. x , y >. , z >. /\ ph ) -> A = <. <. ( 1st ` ( 1st ` A ) ) , ( 2nd ` ( 1st ` A ) ) >. , ( 2nd ` A ) >. ) |
| 26 | 25 | exlimivv | |- ( E. x E. y E. z ( A = <. <. x , y >. , z >. /\ ph ) -> A = <. <. ( 1st ` ( 1st ` A ) ) , ( 2nd ` ( 1st ` A ) ) >. , ( 2nd ` A ) >. ) |
| 27 | 6 26 | syl | |- ( A e. { <. <. x , y >. , z >. | ph } -> A = <. <. ( 1st ` ( 1st ` A ) ) , ( 2nd ` ( 1st ` A ) ) >. , ( 2nd ` A ) >. ) |