This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elo1 | |- ( F e. O(1) <-> ( F e. ( CC ^pm RR ) /\ E. x e. RR E. m e. RR A. y e. ( dom F i^i ( x [,) +oo ) ) ( abs ` ( F ` y ) ) <_ m ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeq | |- ( f = F -> dom f = dom F ) |
|
| 2 | 1 | ineq1d | |- ( f = F -> ( dom f i^i ( x [,) +oo ) ) = ( dom F i^i ( x [,) +oo ) ) ) |
| 3 | fveq1 | |- ( f = F -> ( f ` y ) = ( F ` y ) ) |
|
| 4 | 3 | fveq2d | |- ( f = F -> ( abs ` ( f ` y ) ) = ( abs ` ( F ` y ) ) ) |
| 5 | 4 | breq1d | |- ( f = F -> ( ( abs ` ( f ` y ) ) <_ m <-> ( abs ` ( F ` y ) ) <_ m ) ) |
| 6 | 2 5 | raleqbidv | |- ( f = F -> ( A. y e. ( dom f i^i ( x [,) +oo ) ) ( abs ` ( f ` y ) ) <_ m <-> A. y e. ( dom F i^i ( x [,) +oo ) ) ( abs ` ( F ` y ) ) <_ m ) ) |
| 7 | 6 | 2rexbidv | |- ( f = F -> ( E. x e. RR E. m e. RR A. y e. ( dom f i^i ( x [,) +oo ) ) ( abs ` ( f ` y ) ) <_ m <-> E. x e. RR E. m e. RR A. y e. ( dom F i^i ( x [,) +oo ) ) ( abs ` ( F ` y ) ) <_ m ) ) |
| 8 | df-o1 | |- O(1) = { f e. ( CC ^pm RR ) | E. x e. RR E. m e. RR A. y e. ( dom f i^i ( x [,) +oo ) ) ( abs ` ( f ` y ) ) <_ m } |
|
| 9 | 7 8 | elrab2 | |- ( F e. O(1) <-> ( F e. ( CC ^pm RR ) /\ E. x e. RR E. m e. RR A. y e. ( dom F i^i ( x [,) +oo ) ) ( abs ` ( F ` y ) ) <_ m ) ) |