This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elex22 | |- ( ( A e. B /\ A e. C ) -> E. x ( x e. B /\ x e. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1a | |- ( A e. B -> ( x = A -> x e. B ) ) |
|
| 2 | eleq1a | |- ( A e. C -> ( x = A -> x e. C ) ) |
|
| 3 | 1 2 | anim12ii | |- ( ( A e. B /\ A e. C ) -> ( x = A -> ( x e. B /\ x e. C ) ) ) |
| 4 | 3 | alrimiv | |- ( ( A e. B /\ A e. C ) -> A. x ( x = A -> ( x e. B /\ x e. C ) ) ) |
| 5 | elissetv | |- ( A e. B -> E. x x = A ) |
|
| 6 | 5 | adantr | |- ( ( A e. B /\ A e. C ) -> E. x x = A ) |
| 7 | exim | |- ( A. x ( x = A -> ( x e. B /\ x e. C ) ) -> ( E. x x = A -> E. x ( x e. B /\ x e. C ) ) ) |
|
| 8 | 4 6 7 | sylc | |- ( ( A e. B /\ A e. C ) -> E. x ( x e. B /\ x e. C ) ) |