This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | e333.1 | |- (. ph ,. ps ,. ch ->. th ). |
|
| e333.2 | |- (. ph ,. ps ,. ch ->. ta ). |
||
| e333.3 | |- (. ph ,. ps ,. ch ->. et ). |
||
| e333.4 | |- ( th -> ( ta -> ( et -> ze ) ) ) |
||
| Assertion | e333 | |- (. ph ,. ps ,. ch ->. ze ). |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e333.1 | |- (. ph ,. ps ,. ch ->. th ). |
|
| 2 | e333.2 | |- (. ph ,. ps ,. ch ->. ta ). |
|
| 3 | e333.3 | |- (. ph ,. ps ,. ch ->. et ). |
|
| 4 | e333.4 | |- ( th -> ( ta -> ( et -> ze ) ) ) |
|
| 5 | 3 | dfvd3i | |- ( ph -> ( ps -> ( ch -> et ) ) ) |
| 6 | 5 | 3imp | |- ( ( ph /\ ps /\ ch ) -> et ) |
| 7 | 1 | dfvd3i | |- ( ph -> ( ps -> ( ch -> th ) ) ) |
| 8 | 7 | 3imp | |- ( ( ph /\ ps /\ ch ) -> th ) |
| 9 | 2 | dfvd3i | |- ( ph -> ( ps -> ( ch -> ta ) ) ) |
| 10 | 9 | 3imp | |- ( ( ph /\ ps /\ ch ) -> ta ) |
| 11 | 8 10 4 | syl2im | |- ( ( ph /\ ps /\ ch ) -> ( ( ph /\ ps /\ ch ) -> ( et -> ze ) ) ) |
| 12 | 11 | pm2.43i | |- ( ( ph /\ ps /\ ch ) -> ( et -> ze ) ) |
| 13 | 6 12 | syl5com | |- ( ( ph /\ ps /\ ch ) -> ( ( ph /\ ps /\ ch ) -> ze ) ) |
| 14 | 13 | pm2.43i | |- ( ( ph /\ ps /\ ch ) -> ze ) |
| 15 | 14 | 3exp | |- ( ph -> ( ps -> ( ch -> ze ) ) ) |
| 16 | 15 | dfvd3ir | |- (. ph ,. ps ,. ch ->. ze ). |