This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | e223.1 | |- (. ph ,. ps ->. ch ). |
|
| e223.2 | |- (. ph ,. ps ->. th ). |
||
| e223.3 | |- (. ph ,. ps ,. ta ->. et ). |
||
| e223.4 | |- ( ch -> ( th -> ( et -> ze ) ) ) |
||
| Assertion | e223 | |- (. ph ,. ps ,. ta ->. ze ). |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e223.1 | |- (. ph ,. ps ->. ch ). |
|
| 2 | e223.2 | |- (. ph ,. ps ->. th ). |
|
| 3 | e223.3 | |- (. ph ,. ps ,. ta ->. et ). |
|
| 4 | e223.4 | |- ( ch -> ( th -> ( et -> ze ) ) ) |
|
| 5 | 1 | in2 | |- (. ph ->. ( ps -> ch ) ). |
| 6 | 5 | in1 | |- ( ph -> ( ps -> ch ) ) |
| 7 | 2 | in2 | |- (. ph ->. ( ps -> th ) ). |
| 8 | 7 | in1 | |- ( ph -> ( ps -> th ) ) |
| 9 | 3 | in3 | |- (. ph ,. ps ->. ( ta -> et ) ). |
| 10 | 9 | in2 | |- (. ph ->. ( ps -> ( ta -> et ) ) ). |
| 11 | 10 | in1 | |- ( ph -> ( ps -> ( ta -> et ) ) ) |
| 12 | 6 8 11 4 | ee223 | |- ( ph -> ( ps -> ( ta -> ze ) ) ) |
| 13 | 12 | dfvd3ir | |- (. ph ,. ps ,. ta ->. ze ). |