This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Biconditional form of e1a . sylib is e1bi without virtual deductions. (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | e1bi.1 | |- (. ph ->. ps ). |
|
| e1bi.2 | |- ( ps <-> ch ) |
||
| Assertion | e1bi | |- (. ph ->. ch ). |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e1bi.1 | |- (. ph ->. ps ). |
|
| 2 | e1bi.2 | |- ( ps <-> ch ) |
|
| 3 | 2 | biimpi | |- ( ps -> ch ) |
| 4 | 1 3 | e1a | |- (. ph ->. ch ). |