This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmsnn0 | |- ( A e. ( _V X. _V ) <-> dom { A } =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | 1 | eldm | |- ( x e. dom { A } <-> E. y x { A } y ) |
| 3 | df-br | |- ( x { A } y <-> <. x , y >. e. { A } ) |
|
| 4 | opex | |- <. x , y >. e. _V |
|
| 5 | 4 | elsn | |- ( <. x , y >. e. { A } <-> <. x , y >. = A ) |
| 6 | eqcom | |- ( <. x , y >. = A <-> A = <. x , y >. ) |
|
| 7 | 3 5 6 | 3bitri | |- ( x { A } y <-> A = <. x , y >. ) |
| 8 | 7 | exbii | |- ( E. y x { A } y <-> E. y A = <. x , y >. ) |
| 9 | 2 8 | bitr2i | |- ( E. y A = <. x , y >. <-> x e. dom { A } ) |
| 10 | 9 | exbii | |- ( E. x E. y A = <. x , y >. <-> E. x x e. dom { A } ) |
| 11 | elvv | |- ( A e. ( _V X. _V ) <-> E. x E. y A = <. x , y >. ) |
|
| 12 | n0 | |- ( dom { A } =/= (/) <-> E. x x e. dom { A } ) |
|
| 13 | 10 11 12 | 3bitr4i | |- ( A e. ( _V X. _V ) <-> dom { A } =/= (/) ) |