This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of all extended metrics on a given base set. The definition is similar to df-met , but we also allow the metric to take on the value +oo . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-xmet | |- *Met = ( x e. _V |-> { d e. ( RR* ^m ( x X. x ) ) | A. y e. x A. z e. x ( ( ( y d z ) = 0 <-> y = z ) /\ A. w e. x ( y d z ) <_ ( ( w d y ) +e ( w d z ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cxmet | |- *Met |
|
| 1 | vx | |- x |
|
| 2 | cvv | |- _V |
|
| 3 | vd | |- d |
|
| 4 | cxr | |- RR* |
|
| 5 | cmap | |- ^m |
|
| 6 | 1 | cv | |- x |
| 7 | 6 6 | cxp | |- ( x X. x ) |
| 8 | 4 7 5 | co | |- ( RR* ^m ( x X. x ) ) |
| 9 | vy | |- y |
|
| 10 | vz | |- z |
|
| 11 | 9 | cv | |- y |
| 12 | 3 | cv | |- d |
| 13 | 10 | cv | |- z |
| 14 | 11 13 12 | co | |- ( y d z ) |
| 15 | cc0 | |- 0 |
|
| 16 | 14 15 | wceq | |- ( y d z ) = 0 |
| 17 | 11 13 | wceq | |- y = z |
| 18 | 16 17 | wb | |- ( ( y d z ) = 0 <-> y = z ) |
| 19 | vw | |- w |
|
| 20 | cle | |- <_ |
|
| 21 | 19 | cv | |- w |
| 22 | 21 11 12 | co | |- ( w d y ) |
| 23 | cxad | |- +e |
|
| 24 | 21 13 12 | co | |- ( w d z ) |
| 25 | 22 24 23 | co | |- ( ( w d y ) +e ( w d z ) ) |
| 26 | 14 25 20 | wbr | |- ( y d z ) <_ ( ( w d y ) +e ( w d z ) ) |
| 27 | 26 19 6 | wral | |- A. w e. x ( y d z ) <_ ( ( w d y ) +e ( w d z ) ) |
| 28 | 18 27 | wa | |- ( ( ( y d z ) = 0 <-> y = z ) /\ A. w e. x ( y d z ) <_ ( ( w d y ) +e ( w d z ) ) ) |
| 29 | 28 10 6 | wral | |- A. z e. x ( ( ( y d z ) = 0 <-> y = z ) /\ A. w e. x ( y d z ) <_ ( ( w d y ) +e ( w d z ) ) ) |
| 30 | 29 9 6 | wral | |- A. y e. x A. z e. x ( ( ( y d z ) = 0 <-> y = z ) /\ A. w e. x ( y d z ) <_ ( ( w d y ) +e ( w d z ) ) ) |
| 31 | 30 3 8 | crab | |- { d e. ( RR* ^m ( x X. x ) ) | A. y e. x A. z e. x ( ( ( y d z ) = 0 <-> y = z ) /\ A. w e. x ( y d z ) <_ ( ( w d y ) +e ( w d z ) ) ) } |
| 32 | 1 2 31 | cmpt | |- ( x e. _V |-> { d e. ( RR* ^m ( x X. x ) ) | A. y e. x A. z e. x ( ( ( y d z ) = 0 <-> y = z ) /\ A. w e. x ( y d z ) <_ ( ( w d y ) +e ( w d z ) ) ) } ) |
| 33 | 0 32 | wceq | |- *Met = ( x e. _V |-> { d e. ( RR* ^m ( x X. x ) ) | A. y e. x A. z e. x ( ( ( y d z ) = 0 <-> y = z ) /\ A. w e. x ( y d z ) <_ ( ( w d y ) +e ( w d z ) ) ) } ) |