This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all complex vector spaces. (Contributed by NM, 3-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-vc | |- CVecOLD = { <. g , s >. | ( g e. AbelOp /\ s : ( CC X. ran g ) --> ran g /\ A. x e. ran g ( ( 1 s x ) = x /\ A. y e. CC ( A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) /\ A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cvc | |- CVecOLD |
|
| 1 | vg | |- g |
|
| 2 | vs | |- s |
|
| 3 | 1 | cv | |- g |
| 4 | cablo | |- AbelOp |
|
| 5 | 3 4 | wcel | |- g e. AbelOp |
| 6 | 2 | cv | |- s |
| 7 | cc | |- CC |
|
| 8 | 3 | crn | |- ran g |
| 9 | 7 8 | cxp | |- ( CC X. ran g ) |
| 10 | 9 8 6 | wf | |- s : ( CC X. ran g ) --> ran g |
| 11 | vx | |- x |
|
| 12 | c1 | |- 1 |
|
| 13 | 11 | cv | |- x |
| 14 | 12 13 6 | co | |- ( 1 s x ) |
| 15 | 14 13 | wceq | |- ( 1 s x ) = x |
| 16 | vy | |- y |
|
| 17 | vz | |- z |
|
| 18 | 16 | cv | |- y |
| 19 | 17 | cv | |- z |
| 20 | 13 19 3 | co | |- ( x g z ) |
| 21 | 18 20 6 | co | |- ( y s ( x g z ) ) |
| 22 | 18 13 6 | co | |- ( y s x ) |
| 23 | 18 19 6 | co | |- ( y s z ) |
| 24 | 22 23 3 | co | |- ( ( y s x ) g ( y s z ) ) |
| 25 | 21 24 | wceq | |- ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) |
| 26 | 25 17 8 | wral | |- A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) |
| 27 | caddc | |- + |
|
| 28 | 18 19 27 | co | |- ( y + z ) |
| 29 | 28 13 6 | co | |- ( ( y + z ) s x ) |
| 30 | 19 13 6 | co | |- ( z s x ) |
| 31 | 22 30 3 | co | |- ( ( y s x ) g ( z s x ) ) |
| 32 | 29 31 | wceq | |- ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) |
| 33 | cmul | |- x. |
|
| 34 | 18 19 33 | co | |- ( y x. z ) |
| 35 | 34 13 6 | co | |- ( ( y x. z ) s x ) |
| 36 | 18 30 6 | co | |- ( y s ( z s x ) ) |
| 37 | 35 36 | wceq | |- ( ( y x. z ) s x ) = ( y s ( z s x ) ) |
| 38 | 32 37 | wa | |- ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) |
| 39 | 38 17 7 | wral | |- A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) |
| 40 | 26 39 | wa | |- ( A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) /\ A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) ) |
| 41 | 40 16 7 | wral | |- A. y e. CC ( A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) /\ A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) ) |
| 42 | 15 41 | wa | |- ( ( 1 s x ) = x /\ A. y e. CC ( A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) /\ A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) ) ) |
| 43 | 42 11 8 | wral | |- A. x e. ran g ( ( 1 s x ) = x /\ A. y e. CC ( A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) /\ A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) ) ) |
| 44 | 5 10 43 | w3a | |- ( g e. AbelOp /\ s : ( CC X. ran g ) --> ran g /\ A. x e. ran g ( ( 1 s x ) = x /\ A. y e. CC ( A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) /\ A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) ) ) ) |
| 45 | 44 1 2 | copab | |- { <. g , s >. | ( g e. AbelOp /\ s : ( CC X. ran g ) --> ran g /\ A. x e. ran g ( ( 1 s x ) = x /\ A. y e. CC ( A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) /\ A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) ) ) ) } |
| 46 | 0 45 | wceq | |- CVecOLD = { <. g , s >. | ( g e. AbelOp /\ s : ( CC X. ran g ) --> ran g /\ A. x e. ran g ( ( 1 s x ) = x /\ A. y e. CC ( A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) /\ A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) ) ) ) } |