This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function on two uniform structures which value is the set of uniformly continuous functions from the first uniform structure to the second. A function f is uniformly continuous if, roughly speaking, it is possible to guarantee that ( fx ) and ( fy ) be as close to each other as we please by requiring only that x and y are sufficiently close to each other; unlike ordinary continuity, the maximum distance between ( fx ) and ( fy ) cannot depend on x and y themselves. This formulation is the definition 1 of BourbakiTop1 p. II.6. (Contributed by Thierry Arnoux, 16-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ucn | |- uCn = ( u e. U. ran UnifOn , v e. U. ran UnifOn |-> { f e. ( dom U. v ^m dom U. u ) | A. s e. v E. r e. u A. x e. dom U. u A. y e. dom U. u ( x r y -> ( f ` x ) s ( f ` y ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cucn | |- uCn |
|
| 1 | vu | |- u |
|
| 2 | cust | |- UnifOn |
|
| 3 | 2 | crn | |- ran UnifOn |
| 4 | 3 | cuni | |- U. ran UnifOn |
| 5 | vv | |- v |
|
| 6 | vf | |- f |
|
| 7 | 5 | cv | |- v |
| 8 | 7 | cuni | |- U. v |
| 9 | 8 | cdm | |- dom U. v |
| 10 | cmap | |- ^m |
|
| 11 | 1 | cv | |- u |
| 12 | 11 | cuni | |- U. u |
| 13 | 12 | cdm | |- dom U. u |
| 14 | 9 13 10 | co | |- ( dom U. v ^m dom U. u ) |
| 15 | vs | |- s |
|
| 16 | vr | |- r |
|
| 17 | vx | |- x |
|
| 18 | vy | |- y |
|
| 19 | 17 | cv | |- x |
| 20 | 16 | cv | |- r |
| 21 | 18 | cv | |- y |
| 22 | 19 21 20 | wbr | |- x r y |
| 23 | 6 | cv | |- f |
| 24 | 19 23 | cfv | |- ( f ` x ) |
| 25 | 15 | cv | |- s |
| 26 | 21 23 | cfv | |- ( f ` y ) |
| 27 | 24 26 25 | wbr | |- ( f ` x ) s ( f ` y ) |
| 28 | 22 27 | wi | |- ( x r y -> ( f ` x ) s ( f ` y ) ) |
| 29 | 28 18 13 | wral | |- A. y e. dom U. u ( x r y -> ( f ` x ) s ( f ` y ) ) |
| 30 | 29 17 13 | wral | |- A. x e. dom U. u A. y e. dom U. u ( x r y -> ( f ` x ) s ( f ` y ) ) |
| 31 | 30 16 11 | wrex | |- E. r e. u A. x e. dom U. u A. y e. dom U. u ( x r y -> ( f ` x ) s ( f ` y ) ) |
| 32 | 31 15 7 | wral | |- A. s e. v E. r e. u A. x e. dom U. u A. y e. dom U. u ( x r y -> ( f ` x ) s ( f ` y ) ) |
| 33 | 32 6 14 | crab | |- { f e. ( dom U. v ^m dom U. u ) | A. s e. v E. r e. u A. x e. dom U. u A. y e. dom U. u ( x r y -> ( f ` x ) s ( f ` y ) ) } |
| 34 | 1 5 4 4 33 | cmpo | |- ( u e. U. ran UnifOn , v e. U. ran UnifOn |-> { f e. ( dom U. v ^m dom U. u ) | A. s e. v E. r e. u A. x e. dom U. u A. y e. dom U. u ( x r y -> ( f ` x ) s ( f ` y ) ) } ) |
| 35 | 0 34 | wceq | |- uCn = ( u e. U. ran UnifOn , v e. U. ran UnifOn |-> { f e. ( dom U. v ^m dom U. u ) | A. s e. v E. r e. u A. x e. dom U. u A. y e. dom U. u ( x r y -> ( f ` x ) s ( f ` y ) ) } ) |