This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of the category Set, relativized to a subset u . Example 3.3(1) of Adamek p. 22. This is the category of all sets in u and functions between these sets. Generally, we will take u to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Contributed by FL, 8-Nov-2013) (Revised by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-setc | |- SetCat = ( u e. _V |-> { <. ( Base ` ndx ) , u >. , <. ( Hom ` ndx ) , ( x e. u , y e. u |-> ( y ^m x ) ) >. , <. ( comp ` ndx ) , ( v e. ( u X. u ) , z e. u |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | csetc | |- SetCat |
|
| 1 | vu | |- u |
|
| 2 | cvv | |- _V |
|
| 3 | cbs | |- Base |
|
| 4 | cnx | |- ndx |
|
| 5 | 4 3 | cfv | |- ( Base ` ndx ) |
| 6 | 1 | cv | |- u |
| 7 | 5 6 | cop | |- <. ( Base ` ndx ) , u >. |
| 8 | chom | |- Hom |
|
| 9 | 4 8 | cfv | |- ( Hom ` ndx ) |
| 10 | vx | |- x |
|
| 11 | vy | |- y |
|
| 12 | 11 | cv | |- y |
| 13 | cmap | |- ^m |
|
| 14 | 10 | cv | |- x |
| 15 | 12 14 13 | co | |- ( y ^m x ) |
| 16 | 10 11 6 6 15 | cmpo | |- ( x e. u , y e. u |-> ( y ^m x ) ) |
| 17 | 9 16 | cop | |- <. ( Hom ` ndx ) , ( x e. u , y e. u |-> ( y ^m x ) ) >. |
| 18 | cco | |- comp |
|
| 19 | 4 18 | cfv | |- ( comp ` ndx ) |
| 20 | vv | |- v |
|
| 21 | 6 6 | cxp | |- ( u X. u ) |
| 22 | vz | |- z |
|
| 23 | vg | |- g |
|
| 24 | 22 | cv | |- z |
| 25 | c2nd | |- 2nd |
|
| 26 | 20 | cv | |- v |
| 27 | 26 25 | cfv | |- ( 2nd ` v ) |
| 28 | 24 27 13 | co | |- ( z ^m ( 2nd ` v ) ) |
| 29 | vf | |- f |
|
| 30 | c1st | |- 1st |
|
| 31 | 26 30 | cfv | |- ( 1st ` v ) |
| 32 | 27 31 13 | co | |- ( ( 2nd ` v ) ^m ( 1st ` v ) ) |
| 33 | 23 | cv | |- g |
| 34 | 29 | cv | |- f |
| 35 | 33 34 | ccom | |- ( g o. f ) |
| 36 | 23 29 28 32 35 | cmpo | |- ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) |
| 37 | 20 22 21 6 36 | cmpo | |- ( v e. ( u X. u ) , z e. u |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) |
| 38 | 19 37 | cop | |- <. ( comp ` ndx ) , ( v e. ( u X. u ) , z e. u |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. |
| 39 | 7 17 38 | ctp | |- { <. ( Base ` ndx ) , u >. , <. ( Hom ` ndx ) , ( x e. u , y e. u |-> ( y ^m x ) ) >. , <. ( comp ` ndx ) , ( v e. ( u X. u ) , z e. u |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. } |
| 40 | 1 2 39 | cmpt | |- ( u e. _V |-> { <. ( Base ` ndx ) , u >. , <. ( Hom ` ndx ) , ( x e. u , y e. u |-> ( y ^m x ) ) >. , <. ( comp ` ndx ) , ( v e. ( u X. u ) , z e. u |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. } ) |
| 41 | 0 40 | wceq | |- SetCat = ( u e. _V |-> { <. ( Base ` ndx ) , u >. , <. ( Hom ` ndx ) , ( x e. u , y e. u |-> ( y ^m x ) ) >. , <. ( comp ` ndx ) , ( v e. ( u X. u ) , z e. u |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. } ) |