This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the restriction of a functor to a subcategory (analogue of df-res ). (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-resf | |- |`f = ( f e. _V , h e. _V |-> <. ( ( 1st ` f ) |` dom dom h ) , ( x e. dom h |-> ( ( ( 2nd ` f ) ` x ) |` ( h ` x ) ) ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cresf | |- |`f |
|
| 1 | vf | |- f |
|
| 2 | cvv | |- _V |
|
| 3 | vh | |- h |
|
| 4 | c1st | |- 1st |
|
| 5 | 1 | cv | |- f |
| 6 | 5 4 | cfv | |- ( 1st ` f ) |
| 7 | 3 | cv | |- h |
| 8 | 7 | cdm | |- dom h |
| 9 | 8 | cdm | |- dom dom h |
| 10 | 6 9 | cres | |- ( ( 1st ` f ) |` dom dom h ) |
| 11 | vx | |- x |
|
| 12 | c2nd | |- 2nd |
|
| 13 | 5 12 | cfv | |- ( 2nd ` f ) |
| 14 | 11 | cv | |- x |
| 15 | 14 13 | cfv | |- ( ( 2nd ` f ) ` x ) |
| 16 | 14 7 | cfv | |- ( h ` x ) |
| 17 | 15 16 | cres | |- ( ( ( 2nd ` f ) ` x ) |` ( h ` x ) ) |
| 18 | 11 8 17 | cmpt | |- ( x e. dom h |-> ( ( ( 2nd ` f ) ` x ) |` ( h ` x ) ) ) |
| 19 | 10 18 | cop | |- <. ( ( 1st ` f ) |` dom dom h ) , ( x e. dom h |-> ( ( ( 2nd ` f ) ` x ) |` ( h ` x ) ) ) >. |
| 20 | 1 3 2 2 19 | cmpo | |- ( f e. _V , h e. _V |-> <. ( ( 1st ` f ) |` dom dom h ) , ( x e. dom h |-> ( ( ( 2nd ` f ) ` x ) |` ( h ` x ) ) ) >. ) |
| 21 | 0 20 | wceq | |- |`f = ( f e. _V , h e. _V |-> <. ( ( 1st ` f ) |` dom dom h ) , ( x e. dom h |-> ( ( ( 2nd ` f ) ` x ) |` ( h ` x ) ) ) >. ) |