This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define addition on signed reals. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. From Proposition 9-4.3 of Gleason p. 126. (Contributed by NM, 25-Aug-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-plr | |- +R = { <. <. x , y >. , z >. | ( ( x e. R. /\ y e. R. ) /\ E. w E. v E. u E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. f ) >. ] ~R ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cplr | |- +R |
|
| 1 | vx | |- x |
|
| 2 | vy | |- y |
|
| 3 | vz | |- z |
|
| 4 | 1 | cv | |- x |
| 5 | cnr | |- R. |
|
| 6 | 4 5 | wcel | |- x e. R. |
| 7 | 2 | cv | |- y |
| 8 | 7 5 | wcel | |- y e. R. |
| 9 | 6 8 | wa | |- ( x e. R. /\ y e. R. ) |
| 10 | vw | |- w |
|
| 11 | vv | |- v |
|
| 12 | vu | |- u |
|
| 13 | vf | |- f |
|
| 14 | 10 | cv | |- w |
| 15 | 11 | cv | |- v |
| 16 | 14 15 | cop | |- <. w , v >. |
| 17 | cer | |- ~R |
|
| 18 | 16 17 | cec | |- [ <. w , v >. ] ~R |
| 19 | 4 18 | wceq | |- x = [ <. w , v >. ] ~R |
| 20 | 12 | cv | |- u |
| 21 | 13 | cv | |- f |
| 22 | 20 21 | cop | |- <. u , f >. |
| 23 | 22 17 | cec | |- [ <. u , f >. ] ~R |
| 24 | 7 23 | wceq | |- y = [ <. u , f >. ] ~R |
| 25 | 19 24 | wa | |- ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) |
| 26 | 3 | cv | |- z |
| 27 | cpp | |- +P. |
|
| 28 | 14 20 27 | co | |- ( w +P. u ) |
| 29 | 15 21 27 | co | |- ( v +P. f ) |
| 30 | 28 29 | cop | |- <. ( w +P. u ) , ( v +P. f ) >. |
| 31 | 30 17 | cec | |- [ <. ( w +P. u ) , ( v +P. f ) >. ] ~R |
| 32 | 26 31 | wceq | |- z = [ <. ( w +P. u ) , ( v +P. f ) >. ] ~R |
| 33 | 25 32 | wa | |- ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. f ) >. ] ~R ) |
| 34 | 33 13 | wex | |- E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. f ) >. ] ~R ) |
| 35 | 34 12 | wex | |- E. u E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. f ) >. ] ~R ) |
| 36 | 35 11 | wex | |- E. v E. u E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. f ) >. ] ~R ) |
| 37 | 36 10 | wex | |- E. w E. v E. u E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. f ) >. ] ~R ) |
| 38 | 9 37 | wa | |- ( ( x e. R. /\ y e. R. ) /\ E. w E. v E. u E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. f ) >. ] ~R ) ) |
| 39 | 38 1 2 3 | coprab | |- { <. <. x , y >. , z >. | ( ( x e. R. /\ y e. R. ) /\ E. w E. v E. u E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. f ) >. ] ~R ) ) } |
| 40 | 0 39 | wceq | |- +R = { <. <. x , y >. , z >. | ( ( x e. R. /\ y e. R. ) /\ E. w E. v E. u E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. f ) >. ] ~R ) ) } |