This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the projection function on a Hilbert space, as a mapping from the Hilbert lattice to a function on Hilbert space. Every closed subspace is associated with a unique projection function. Remark in Kalmbach p. 66, adopted as a definition. ( projhH )A is the projection of vector A onto closed subspace H . Note that the range of projh is the set of all projection operators, so T e. ran projh means that T is a projection operator. (Contributed by NM, 23-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-pjh | |- projh = ( h e. CH |-> ( x e. ~H |-> ( iota_ z e. h E. y e. ( _|_ ` h ) x = ( z +h y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cpjh | |- projh |
|
| 1 | vh | |- h |
|
| 2 | cch | |- CH |
|
| 3 | vx | |- x |
|
| 4 | chba | |- ~H |
|
| 5 | vz | |- z |
|
| 6 | 1 | cv | |- h |
| 7 | vy | |- y |
|
| 8 | cort | |- _|_ |
|
| 9 | 6 8 | cfv | |- ( _|_ ` h ) |
| 10 | 3 | cv | |- x |
| 11 | 5 | cv | |- z |
| 12 | cva | |- +h |
|
| 13 | 7 | cv | |- y |
| 14 | 11 13 12 | co | |- ( z +h y ) |
| 15 | 10 14 | wceq | |- x = ( z +h y ) |
| 16 | 15 7 9 | wrex | |- E. y e. ( _|_ ` h ) x = ( z +h y ) |
| 17 | 16 5 6 | crio | |- ( iota_ z e. h E. y e. ( _|_ ` h ) x = ( z +h y ) ) |
| 18 | 3 4 17 | cmpt | |- ( x e. ~H |-> ( iota_ z e. h E. y e. ( _|_ ` h ) x = ( z +h y ) ) ) |
| 19 | 1 2 18 | cmpt | |- ( h e. CH |-> ( x e. ~H |-> ( iota_ z e. h E. y e. ( _|_ ` h ) x = ( z +h y ) ) ) ) |
| 20 | 0 19 | wceq | |- projh = ( h e. CH |-> ( x e. ~H |-> ( iota_ z e. h E. y e. ( _|_ ` h ) x = ( z +h y ) ) ) ) |