This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Amonoid is a semigroup, which has a two-sided neutral element. Definition 2 in BourbakiAlg1 p. 12. In other words (according to the definition in Lang p. 3), a monoid is a set equipped with an everywhere defined internal operation (see mndcl ), whose operation is associative (see mndass ) and has a two-sided neutral element (see mndid ), see also ismnd . (Contributed by Mario Carneiro, 6-Jan-2015) (Revised by AV, 1-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mnd | |- Mnd = { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmnd | |- Mnd |
|
| 1 | vg | |- g |
|
| 2 | csgrp | |- Smgrp |
|
| 3 | cbs | |- Base |
|
| 4 | 1 | cv | |- g |
| 5 | 4 3 | cfv | |- ( Base ` g ) |
| 6 | vb | |- b |
|
| 7 | cplusg | |- +g |
|
| 8 | 4 7 | cfv | |- ( +g ` g ) |
| 9 | vp | |- p |
|
| 10 | ve | |- e |
|
| 11 | 6 | cv | |- b |
| 12 | vx | |- x |
|
| 13 | 10 | cv | |- e |
| 14 | 9 | cv | |- p |
| 15 | 12 | cv | |- x |
| 16 | 13 15 14 | co | |- ( e p x ) |
| 17 | 16 15 | wceq | |- ( e p x ) = x |
| 18 | 15 13 14 | co | |- ( x p e ) |
| 19 | 18 15 | wceq | |- ( x p e ) = x |
| 20 | 17 19 | wa | |- ( ( e p x ) = x /\ ( x p e ) = x ) |
| 21 | 20 12 11 | wral | |- A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) |
| 22 | 21 10 11 | wrex | |- E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) |
| 23 | 22 9 8 | wsbc | |- [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) |
| 24 | 23 6 5 | wsbc | |- [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) |
| 25 | 24 1 2 | crab | |- { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) } |
| 26 | 0 25 | wceq | |- Mnd = { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) } |