This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a space that is locally A , where A is a topological property like "compact", "connected", or "path-connected". A topological space is locally A if every neighborhood of a point contains an open subneighborhood that is A in the subspace topology. (Contributed by Mario Carneiro, 2-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lly | |- Locally A = { j e. Top | A. x e. j A. y e. x E. u e. ( j i^i ~P x ) ( y e. u /\ ( j |`t u ) e. A ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | |- A |
|
| 1 | 0 | clly | |- Locally A |
| 2 | vj | |- j |
|
| 3 | ctop | |- Top |
|
| 4 | vx | |- x |
|
| 5 | 2 | cv | |- j |
| 6 | vy | |- y |
|
| 7 | 4 | cv | |- x |
| 8 | vu | |- u |
|
| 9 | 7 | cpw | |- ~P x |
| 10 | 5 9 | cin | |- ( j i^i ~P x ) |
| 11 | 6 | cv | |- y |
| 12 | 8 | cv | |- u |
| 13 | 11 12 | wcel | |- y e. u |
| 14 | crest | |- |`t |
|
| 15 | 5 12 14 | co | |- ( j |`t u ) |
| 16 | 15 0 | wcel | |- ( j |`t u ) e. A |
| 17 | 13 16 | wa | |- ( y e. u /\ ( j |`t u ) e. A ) |
| 18 | 17 8 10 | wrex | |- E. u e. ( j i^i ~P x ) ( y e. u /\ ( j |`t u ) e. A ) |
| 19 | 18 6 7 | wral | |- A. y e. x E. u e. ( j i^i ~P x ) ( y e. u /\ ( j |`t u ) e. A ) |
| 20 | 19 4 5 | wral | |- A. x e. j A. y e. x E. u e. ( j i^i ~P x ) ( y e. u /\ ( j |`t u ) e. A ) |
| 21 | 20 2 3 | crab | |- { j e. Top | A. x e. j A. y e. x E. u e. ( j i^i ~P x ) ( y e. u /\ ( j |`t u ) e. A ) } |
| 22 | 1 21 | wceq | |- Locally A = { j e. Top | A. x e. j A. y e. x E. u e. ( j i^i ~P x ) ( y e. u /\ ( j |`t u ) e. A ) } |