This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the (proper) class of all finite sets. Similar to Definition 10.29 of TakeutiZaring p. 91, whose "Fin(a)" corresponds to our " a e. Fin ". This definition is meaningful whether or not we accept the Axiom of Infinity ax-inf2 . If we accept Infinity, we can also express A e. Fin by A ~< _om (Theorem isfinite .) (Contributed by NM, 22-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-fin | |- Fin = { x | E. y e. _om x ~~ y } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cfn | |- Fin |
|
| 1 | vx | |- x |
|
| 2 | vy | |- y |
|
| 3 | com | |- _om |
|
| 4 | 1 | cv | |- x |
| 5 | cen | |- ~~ |
|
| 6 | 2 | cv | |- y |
| 7 | 4 6 5 | wbr | |- x ~~ y |
| 8 | 7 2 3 | wrex | |- E. y e. _om x ~~ y |
| 9 | 8 1 | cab | |- { x | E. y e. _om x ~~ y } |
| 10 | 0 9 | wceq | |- Fin = { x | E. y e. _om x ~~ y } |