This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the disjoint element relations class, i.e., the disjoint elements class. The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is ( A e. ElDisjs <-> ElDisj A ) when A is a set, see eleldisjseldisj . (Contributed by Peter Mazsa, 28-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-eldisjs | |- ElDisjs = { a | ( `' _E |` a ) e. Disjs } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | celdisjs | |- ElDisjs |
|
| 1 | va | |- a |
|
| 2 | cep | |- _E |
|
| 3 | 2 | ccnv | |- `' _E |
| 4 | 1 | cv | |- a |
| 5 | 3 4 | cres | |- ( `' _E |` a ) |
| 6 | cdisjs | |- Disjs |
|
| 7 | 5 6 | wcel | |- ( `' _E |` a ) e. Disjs |
| 8 | 7 1 | cab | |- { a | ( `' _E |` a ) e. Disjs } |
| 9 | 0 8 | wceq | |- ElDisjs = { a | ( `' _E |` a ) e. Disjs } |