This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the free group equivalence relation, which is the smallest equivalence relation ~ such that for any words A , B and formal symbol x with inverse invg x , A B ~A x ( invg x ) B . (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-efg | |- ~FG = ( i e. _V |-> |^| { r | ( r Er Word ( i X. 2o ) /\ A. x e. Word ( i X. 2o ) A. n e. ( 0 ... ( # ` x ) ) A. y e. i A. z e. 2o x r ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cefg | |- ~FG |
|
| 1 | vi | |- i |
|
| 2 | cvv | |- _V |
|
| 3 | vr | |- r |
|
| 4 | 3 | cv | |- r |
| 5 | 1 | cv | |- i |
| 6 | c2o | |- 2o |
|
| 7 | 5 6 | cxp | |- ( i X. 2o ) |
| 8 | 7 | cword | |- Word ( i X. 2o ) |
| 9 | 8 4 | wer | |- r Er Word ( i X. 2o ) |
| 10 | vx | |- x |
|
| 11 | vn | |- n |
|
| 12 | cc0 | |- 0 |
|
| 13 | cfz | |- ... |
|
| 14 | chash | |- # |
|
| 15 | 10 | cv | |- x |
| 16 | 15 14 | cfv | |- ( # ` x ) |
| 17 | 12 16 13 | co | |- ( 0 ... ( # ` x ) ) |
| 18 | vy | |- y |
|
| 19 | vz | |- z |
|
| 20 | csplice | |- splice |
|
| 21 | 11 | cv | |- n |
| 22 | 18 | cv | |- y |
| 23 | 19 | cv | |- z |
| 24 | 22 23 | cop | |- <. y , z >. |
| 25 | c1o | |- 1o |
|
| 26 | 25 23 | cdif | |- ( 1o \ z ) |
| 27 | 22 26 | cop | |- <. y , ( 1o \ z ) >. |
| 28 | 24 27 | cs2 | |- <" <. y , z >. <. y , ( 1o \ z ) >. "> |
| 29 | 21 21 28 | cotp | |- <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. |
| 30 | 15 29 20 | co | |- ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) |
| 31 | 15 30 4 | wbr | |- x r ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) |
| 32 | 31 19 6 | wral | |- A. z e. 2o x r ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) |
| 33 | 32 18 5 | wral | |- A. y e. i A. z e. 2o x r ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) |
| 34 | 33 11 17 | wral | |- A. n e. ( 0 ... ( # ` x ) ) A. y e. i A. z e. 2o x r ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) |
| 35 | 34 10 8 | wral | |- A. x e. Word ( i X. 2o ) A. n e. ( 0 ... ( # ` x ) ) A. y e. i A. z e. 2o x r ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) |
| 36 | 9 35 | wa | |- ( r Er Word ( i X. 2o ) /\ A. x e. Word ( i X. 2o ) A. n e. ( 0 ... ( # ` x ) ) A. y e. i A. z e. 2o x r ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) ) |
| 37 | 36 3 | cab | |- { r | ( r Er Word ( i X. 2o ) /\ A. x e. Word ( i X. 2o ) A. n e. ( 0 ... ( # ` x ) ) A. y e. i A. z e. 2o x r ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) ) } |
| 38 | 37 | cint | |- |^| { r | ( r Er Word ( i X. 2o ) /\ A. x e. Word ( i X. 2o ) A. n e. ( 0 ... ( # ` x ) ) A. y e. i A. z e. 2o x r ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) ) } |
| 39 | 1 2 38 | cmpt | |- ( i e. _V |-> |^| { r | ( r Er Word ( i X. 2o ) /\ A. x e. Word ( i X. 2o ) A. n e. ( 0 ... ( # ` x ) ) A. y e. i A. z e. 2o x r ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) ) } ) |
| 40 | 0 39 | wceq | |- ~FG = ( i e. _V |-> |^| { r | ( r Er Word ( i X. 2o ) /\ A. x e. Word ( i X. 2o ) A. n e. ( 0 ... ( # ` x ) ) A. y e. i A. z e. 2o x r ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) ) } ) |