This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the little cup function. See brcup for its value. (Contributed by Scott Fenton, 14-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cup | |- Cup = ( ( ( _V X. _V ) X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( ( `' 1st o. _E ) u. ( `' 2nd o. _E ) ) (x) _V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccup | |- Cup |
|
| 1 | cvv | |- _V |
|
| 2 | 1 1 | cxp | |- ( _V X. _V ) |
| 3 | 2 1 | cxp | |- ( ( _V X. _V ) X. _V ) |
| 4 | cep | |- _E |
|
| 5 | 1 4 | ctxp | |- ( _V (x) _E ) |
| 6 | c1st | |- 1st |
|
| 7 | 6 | ccnv | |- `' 1st |
| 8 | 7 4 | ccom | |- ( `' 1st o. _E ) |
| 9 | c2nd | |- 2nd |
|
| 10 | 9 | ccnv | |- `' 2nd |
| 11 | 10 4 | ccom | |- ( `' 2nd o. _E ) |
| 12 | 8 11 | cun | |- ( ( `' 1st o. _E ) u. ( `' 2nd o. _E ) ) |
| 13 | 12 1 | ctxp | |- ( ( ( `' 1st o. _E ) u. ( `' 2nd o. _E ) ) (x) _V ) |
| 14 | 5 13 | csymdif | |- ( ( _V (x) _E ) /_\ ( ( ( `' 1st o. _E ) u. ( `' 2nd o. _E ) ) (x) _V ) ) |
| 15 | 14 | crn | |- ran ( ( _V (x) _E ) /_\ ( ( ( `' 1st o. _E ) u. ( `' 2nd o. _E ) ) (x) _V ) ) |
| 16 | 3 15 | cdif | |- ( ( ( _V X. _V ) X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( ( `' 1st o. _E ) u. ( `' 2nd o. _E ) ) (x) _V ) ) ) |
| 17 | 0 16 | wceq | |- Cup = ( ( ( _V X. _V ) X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( ( `' 1st o. _E ) u. ( `' 2nd o. _E ) ) (x) _V ) ) ) |