This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the category identity arrow. Since it is uniquely defined when it exists, we do not need to add it to the data of the category, and instead extract it by uniqueness. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cid | |- Id = ( c e. Cat |-> [_ ( Base ` c ) / b ]_ [_ ( Hom ` c ) / h ]_ [_ ( comp ` c ) / o ]_ ( x e. b |-> ( iota_ g e. ( x h x ) A. y e. b ( A. f e. ( y h x ) ( g ( <. y , x >. o x ) f ) = f /\ A. f e. ( x h y ) ( f ( <. x , x >. o y ) g ) = f ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccid | |- Id |
|
| 1 | vc | |- c |
|
| 2 | ccat | |- Cat |
|
| 3 | cbs | |- Base |
|
| 4 | 1 | cv | |- c |
| 5 | 4 3 | cfv | |- ( Base ` c ) |
| 6 | vb | |- b |
|
| 7 | chom | |- Hom |
|
| 8 | 4 7 | cfv | |- ( Hom ` c ) |
| 9 | vh | |- h |
|
| 10 | cco | |- comp |
|
| 11 | 4 10 | cfv | |- ( comp ` c ) |
| 12 | vo | |- o |
|
| 13 | vx | |- x |
|
| 14 | 6 | cv | |- b |
| 15 | vg | |- g |
|
| 16 | 13 | cv | |- x |
| 17 | 9 | cv | |- h |
| 18 | 16 16 17 | co | |- ( x h x ) |
| 19 | vy | |- y |
|
| 20 | vf | |- f |
|
| 21 | 19 | cv | |- y |
| 22 | 21 16 17 | co | |- ( y h x ) |
| 23 | 15 | cv | |- g |
| 24 | 21 16 | cop | |- <. y , x >. |
| 25 | 12 | cv | |- o |
| 26 | 24 16 25 | co | |- ( <. y , x >. o x ) |
| 27 | 20 | cv | |- f |
| 28 | 23 27 26 | co | |- ( g ( <. y , x >. o x ) f ) |
| 29 | 28 27 | wceq | |- ( g ( <. y , x >. o x ) f ) = f |
| 30 | 29 20 22 | wral | |- A. f e. ( y h x ) ( g ( <. y , x >. o x ) f ) = f |
| 31 | 16 21 17 | co | |- ( x h y ) |
| 32 | 16 16 | cop | |- <. x , x >. |
| 33 | 32 21 25 | co | |- ( <. x , x >. o y ) |
| 34 | 27 23 33 | co | |- ( f ( <. x , x >. o y ) g ) |
| 35 | 34 27 | wceq | |- ( f ( <. x , x >. o y ) g ) = f |
| 36 | 35 20 31 | wral | |- A. f e. ( x h y ) ( f ( <. x , x >. o y ) g ) = f |
| 37 | 30 36 | wa | |- ( A. f e. ( y h x ) ( g ( <. y , x >. o x ) f ) = f /\ A. f e. ( x h y ) ( f ( <. x , x >. o y ) g ) = f ) |
| 38 | 37 19 14 | wral | |- A. y e. b ( A. f e. ( y h x ) ( g ( <. y , x >. o x ) f ) = f /\ A. f e. ( x h y ) ( f ( <. x , x >. o y ) g ) = f ) |
| 39 | 38 15 18 | crio | |- ( iota_ g e. ( x h x ) A. y e. b ( A. f e. ( y h x ) ( g ( <. y , x >. o x ) f ) = f /\ A. f e. ( x h y ) ( f ( <. x , x >. o y ) g ) = f ) ) |
| 40 | 13 14 39 | cmpt | |- ( x e. b |-> ( iota_ g e. ( x h x ) A. y e. b ( A. f e. ( y h x ) ( g ( <. y , x >. o x ) f ) = f /\ A. f e. ( x h y ) ( f ( <. x , x >. o y ) g ) = f ) ) ) |
| 41 | 12 11 40 | csb | |- [_ ( comp ` c ) / o ]_ ( x e. b |-> ( iota_ g e. ( x h x ) A. y e. b ( A. f e. ( y h x ) ( g ( <. y , x >. o x ) f ) = f /\ A. f e. ( x h y ) ( f ( <. x , x >. o y ) g ) = f ) ) ) |
| 42 | 9 8 41 | csb | |- [_ ( Hom ` c ) / h ]_ [_ ( comp ` c ) / o ]_ ( x e. b |-> ( iota_ g e. ( x h x ) A. y e. b ( A. f e. ( y h x ) ( g ( <. y , x >. o x ) f ) = f /\ A. f e. ( x h y ) ( f ( <. x , x >. o y ) g ) = f ) ) ) |
| 43 | 6 5 42 | csb | |- [_ ( Base ` c ) / b ]_ [_ ( Hom ` c ) / h ]_ [_ ( comp ` c ) / o ]_ ( x e. b |-> ( iota_ g e. ( x h x ) A. y e. b ( A. f e. ( y h x ) ( g ( <. y , x >. o x ) f ) = f /\ A. f e. ( x h y ) ( f ( <. x , x >. o y ) g ) = f ) ) ) |
| 44 | 1 2 43 | cmpt | |- ( c e. Cat |-> [_ ( Base ` c ) / b ]_ [_ ( Hom ` c ) / h ]_ [_ ( comp ` c ) / o ]_ ( x e. b |-> ( iota_ g e. ( x h x ) A. y e. b ( A. f e. ( y h x ) ( g ( <. y , x >. o x ) f ) = f /\ A. f e. ( x h y ) ( f ( <. x , x >. o y ) g ) = f ) ) ) ) |
| 45 | 0 44 | wceq | |- Id = ( c e. Cat |-> [_ ( Base ` c ) / b ]_ [_ ( Hom ` c ) / h ]_ [_ ( comp ` c ) / o ]_ ( x e. b |-> ( iota_ g e. ( x h x ) A. y e. b ( A. f e. ( y h x ) ( g ( <. y , x >. o x ) f ) = f /\ A. f e. ( x h y ) ( f ( <. x , x >. o y ) g ) = f ) ) ) ) |