This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the first projection functor out of the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-1stf | |- 1stF = ( r e. Cat , s e. Cat |-> [_ ( ( Base ` r ) X. ( Base ` s ) ) / b ]_ <. ( 1st |` b ) , ( x e. b , y e. b |-> ( 1st |` ( x ( Hom ` ( r Xc. s ) ) y ) ) ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | c1stf | |- 1stF |
|
| 1 | vr | |- r |
|
| 2 | ccat | |- Cat |
|
| 3 | vs | |- s |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- r |
| 6 | 5 4 | cfv | |- ( Base ` r ) |
| 7 | 3 | cv | |- s |
| 8 | 7 4 | cfv | |- ( Base ` s ) |
| 9 | 6 8 | cxp | |- ( ( Base ` r ) X. ( Base ` s ) ) |
| 10 | vb | |- b |
|
| 11 | c1st | |- 1st |
|
| 12 | 10 | cv | |- b |
| 13 | 11 12 | cres | |- ( 1st |` b ) |
| 14 | vx | |- x |
|
| 15 | vy | |- y |
|
| 16 | 14 | cv | |- x |
| 17 | chom | |- Hom |
|
| 18 | cxpc | |- Xc. |
|
| 19 | 5 7 18 | co | |- ( r Xc. s ) |
| 20 | 19 17 | cfv | |- ( Hom ` ( r Xc. s ) ) |
| 21 | 15 | cv | |- y |
| 22 | 16 21 20 | co | |- ( x ( Hom ` ( r Xc. s ) ) y ) |
| 23 | 11 22 | cres | |- ( 1st |` ( x ( Hom ` ( r Xc. s ) ) y ) ) |
| 24 | 14 15 12 12 23 | cmpo | |- ( x e. b , y e. b |-> ( 1st |` ( x ( Hom ` ( r Xc. s ) ) y ) ) ) |
| 25 | 13 24 | cop | |- <. ( 1st |` b ) , ( x e. b , y e. b |-> ( 1st |` ( x ( Hom ` ( r Xc. s ) ) y ) ) ) >. |
| 26 | 10 9 25 | csb | |- [_ ( ( Base ` r ) X. ( Base ` s ) ) / b ]_ <. ( 1st |` b ) , ( x e. b , y e. b |-> ( 1st |` ( x ( Hom ` ( r Xc. s ) ) y ) ) ) >. |
| 27 | 1 3 2 2 26 | cmpo | |- ( r e. Cat , s e. Cat |-> [_ ( ( Base ` r ) X. ( Base ` s ) ) / b ]_ <. ( 1st |` b ) , ( x e. b , y e. b |-> ( 1st |` ( x ( Hom ` ( r Xc. s ) ) y ) ) ) >. ) |
| 28 | 0 27 | wceq | |- 1stF = ( r e. Cat , s e. Cat |-> [_ ( ( Base ` r ) X. ( Base ` s ) ) / b ]_ <. ( 1st |` b ) , ( x e. b , y e. b |-> ( 1st |` ( x ( Hom ` ( r Xc. s ) ) y ) ) ) >. ) |