This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate univariate polynomial degree to multivariate. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | deg1fval.d | |- D = ( deg1 ` R ) |
|
| Assertion | deg1fval | |- D = ( 1o mDeg R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deg1fval.d | |- D = ( deg1 ` R ) |
|
| 2 | oveq2 | |- ( r = R -> ( 1o mDeg r ) = ( 1o mDeg R ) ) |
|
| 3 | df-deg1 | |- deg1 = ( r e. _V |-> ( 1o mDeg r ) ) |
|
| 4 | ovex | |- ( 1o mDeg R ) e. _V |
|
| 5 | 2 3 4 | fvmpt | |- ( R e. _V -> ( deg1 ` R ) = ( 1o mDeg R ) ) |
| 6 | fvprc | |- ( -. R e. _V -> ( deg1 ` R ) = (/) ) |
|
| 7 | reldmmdeg | |- Rel dom mDeg |
|
| 8 | 7 | ovprc2 | |- ( -. R e. _V -> ( 1o mDeg R ) = (/) ) |
| 9 | 6 8 | eqtr4d | |- ( -. R e. _V -> ( deg1 ` R ) = ( 1o mDeg R ) ) |
| 10 | 5 9 | pm2.61i | |- ( deg1 ` R ) = ( 1o mDeg R ) |
| 11 | 1 10 | eqtri | |- D = ( 1o mDeg R ) |