This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for an alternate version of weak deduction theorem. (Contributed by NM, 2-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dedlem0b | |- ( -. ph -> ( ps <-> ( ( ps -> ph ) -> ( ch /\ ph ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 | |- ( -. ph -> ( ph -> ( ch /\ ph ) ) ) |
|
| 2 | 1 | imim2d | |- ( -. ph -> ( ( ps -> ph ) -> ( ps -> ( ch /\ ph ) ) ) ) |
| 3 | 2 | com23 | |- ( -. ph -> ( ps -> ( ( ps -> ph ) -> ( ch /\ ph ) ) ) ) |
| 4 | pm2.21 | |- ( -. ps -> ( ps -> ph ) ) |
|
| 5 | simpr | |- ( ( ch /\ ph ) -> ph ) |
|
| 6 | 4 5 | imim12i | |- ( ( ( ps -> ph ) -> ( ch /\ ph ) ) -> ( -. ps -> ph ) ) |
| 7 | 6 | con1d | |- ( ( ( ps -> ph ) -> ( ch /\ ph ) ) -> ( -. ph -> ps ) ) |
| 8 | 7 | com12 | |- ( -. ph -> ( ( ( ps -> ph ) -> ( ch /\ ph ) ) -> ps ) ) |
| 9 | 3 8 | impbid | |- ( -. ph -> ( ps <-> ( ( ps -> ph ) -> ( ch /\ ph ) ) ) ) |