This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Datisi", one of the syllogisms of Aristotelian logic. All ph is ps , and some ph is ch , therefore some ch is ps . In Aristotelian notation, AII-3: MaP and MiS therefore SiP. (Contributed by David A. Wheeler, 28-Aug-2016) Shorten and reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | datisi.maj | |- A. x ( ph -> ps ) |
|
| datisi.min | |- E. x ( ph /\ ch ) |
||
| Assertion | datisi | |- E. x ( ch /\ ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | datisi.maj | |- A. x ( ph -> ps ) |
|
| 2 | datisi.min | |- E. x ( ph /\ ch ) |
|
| 3 | exancom | |- ( E. x ( ph /\ ch ) <-> E. x ( ch /\ ph ) ) |
|
| 4 | 2 3 | mpbi | |- E. x ( ch /\ ph ) |
| 5 | 1 4 | darii | |- E. x ( ch /\ ps ) |