This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Perform a cyclical shift for a function over a half-open range of nonnegative integers. (Contributed by AV, 20-May-2018) (Revised by AV, 17-Nov-2018) (Revised by AV, 4-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshfn | |- ( ( W e. { f | E. l e. NN0 f Fn ( 0 ..^ l ) } /\ N e. ZZ ) -> ( W cyclShift N ) = if ( W = (/) , (/) , ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 | |- ( w = W -> ( w = (/) <-> W = (/) ) ) |
|
| 2 | 1 | adantr | |- ( ( w = W /\ n = N ) -> ( w = (/) <-> W = (/) ) ) |
| 3 | simpl | |- ( ( w = W /\ n = N ) -> w = W ) |
|
| 4 | simpr | |- ( ( w = W /\ n = N ) -> n = N ) |
|
| 5 | fveq2 | |- ( w = W -> ( # ` w ) = ( # ` W ) ) |
|
| 6 | 5 | adantr | |- ( ( w = W /\ n = N ) -> ( # ` w ) = ( # ` W ) ) |
| 7 | 4 6 | oveq12d | |- ( ( w = W /\ n = N ) -> ( n mod ( # ` w ) ) = ( N mod ( # ` W ) ) ) |
| 8 | 7 6 | opeq12d | |- ( ( w = W /\ n = N ) -> <. ( n mod ( # ` w ) ) , ( # ` w ) >. = <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) |
| 9 | 3 8 | oveq12d | |- ( ( w = W /\ n = N ) -> ( w substr <. ( n mod ( # ` w ) ) , ( # ` w ) >. ) = ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ) |
| 10 | 3 7 | oveq12d | |- ( ( w = W /\ n = N ) -> ( w prefix ( n mod ( # ` w ) ) ) = ( W prefix ( N mod ( # ` W ) ) ) ) |
| 11 | 9 10 | oveq12d | |- ( ( w = W /\ n = N ) -> ( ( w substr <. ( n mod ( # ` w ) ) , ( # ` w ) >. ) ++ ( w prefix ( n mod ( # ` w ) ) ) ) = ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) ) |
| 12 | 2 11 | ifbieq2d | |- ( ( w = W /\ n = N ) -> if ( w = (/) , (/) , ( ( w substr <. ( n mod ( # ` w ) ) , ( # ` w ) >. ) ++ ( w prefix ( n mod ( # ` w ) ) ) ) ) = if ( W = (/) , (/) , ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) ) ) |
| 13 | df-csh | |- cyclShift = ( w e. { f | E. l e. NN0 f Fn ( 0 ..^ l ) } , n e. ZZ |-> if ( w = (/) , (/) , ( ( w substr <. ( n mod ( # ` w ) ) , ( # ` w ) >. ) ++ ( w prefix ( n mod ( # ` w ) ) ) ) ) ) |
|
| 14 | 0ex | |- (/) e. _V |
|
| 15 | ovex | |- ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) e. _V |
|
| 16 | 14 15 | ifex | |- if ( W = (/) , (/) , ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) ) e. _V |
| 17 | 12 13 16 | ovmpoa | |- ( ( W e. { f | E. l e. NN0 f Fn ( 0 ..^ l ) } /\ N e. ZZ ) -> ( W cyclShift N ) = if ( W = (/) , (/) , ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) ) ) |