This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conversion of implicit substitution to explicit substitution into a class (closed form of csbie2 ). (Contributed by NM, 3-Sep-2007) (Revised by Mario Carneiro, 13-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | csbie2t.1 | |- A e. _V |
|
| csbie2t.2 | |- B e. _V |
||
| Assertion | csbie2t | |- ( A. x A. y ( ( x = A /\ y = B ) -> C = D ) -> [_ A / x ]_ [_ B / y ]_ C = D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbie2t.1 | |- A e. _V |
|
| 2 | csbie2t.2 | |- B e. _V |
|
| 3 | nfa1 | |- F/ x A. x A. y ( ( x = A /\ y = B ) -> C = D ) |
|
| 4 | nfcvd | |- ( A. x A. y ( ( x = A /\ y = B ) -> C = D ) -> F/_ x D ) |
|
| 5 | 1 | a1i | |- ( A. x A. y ( ( x = A /\ y = B ) -> C = D ) -> A e. _V ) |
| 6 | nfa2 | |- F/ y A. x A. y ( ( x = A /\ y = B ) -> C = D ) |
|
| 7 | nfv | |- F/ y x = A |
|
| 8 | 6 7 | nfan | |- F/ y ( A. x A. y ( ( x = A /\ y = B ) -> C = D ) /\ x = A ) |
| 9 | nfcvd | |- ( ( A. x A. y ( ( x = A /\ y = B ) -> C = D ) /\ x = A ) -> F/_ y D ) |
|
| 10 | 2 | a1i | |- ( ( A. x A. y ( ( x = A /\ y = B ) -> C = D ) /\ x = A ) -> B e. _V ) |
| 11 | 2sp | |- ( A. x A. y ( ( x = A /\ y = B ) -> C = D ) -> ( ( x = A /\ y = B ) -> C = D ) ) |
|
| 12 | 11 | impl | |- ( ( ( A. x A. y ( ( x = A /\ y = B ) -> C = D ) /\ x = A ) /\ y = B ) -> C = D ) |
| 13 | 8 9 10 12 | csbiedf | |- ( ( A. x A. y ( ( x = A /\ y = B ) -> C = D ) /\ x = A ) -> [_ B / y ]_ C = D ) |
| 14 | 3 4 5 13 | csbiedf | |- ( A. x A. y ( ( x = A /\ y = B ) -> C = D ) -> [_ A / x ]_ [_ B / y ]_ C = D ) |