This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substituting into equivalent classes gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbeq2 | |- ( A. x B = C -> [_ A / x ]_ B = [_ A / x ]_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | |- ( B = C -> ( y e. B <-> y e. C ) ) |
|
| 2 | 1 | alimi | |- ( A. x B = C -> A. x ( y e. B <-> y e. C ) ) |
| 3 | sbcbi2 | |- ( A. x ( y e. B <-> y e. C ) -> ( [. A / x ]. y e. B <-> [. A / x ]. y e. C ) ) |
|
| 4 | 2 3 | syl | |- ( A. x B = C -> ( [. A / x ]. y e. B <-> [. A / x ]. y e. C ) ) |
| 5 | 4 | abbidv | |- ( A. x B = C -> { y | [. A / x ]. y e. B } = { y | [. A / x ]. y e. C } ) |
| 6 | df-csb | |- [_ A / x ]_ B = { y | [. A / x ]. y e. B } |
|
| 7 | df-csb | |- [_ A / x ]_ C = { y | [. A / x ]. y e. C } |
|
| 8 | 5 6 7 | 3eqtr4g | |- ( A. x B = C -> [_ A / x ]_ B = [_ A / x ]_ C ) |