This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A circuit is a closed walk. (Contributed by AV, 17-Feb-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | crctisclwlk | |- ( F ( Circuits ` G ) P -> F ( ClWalks ` G ) P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctprop | |- ( F ( Circuits ` G ) P -> ( F ( Trails ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
|
| 2 | trliswlk | |- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
|
| 3 | isclwlk | |- ( F ( ClWalks ` G ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
|
| 4 | 3 | biimpri | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> F ( ClWalks ` G ) P ) |
| 5 | 2 4 | sylan | |- ( ( F ( Trails ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> F ( ClWalks ` G ) P ) |
| 6 | 1 5 | syl | |- ( F ( Circuits ` G ) P -> F ( ClWalks ` G ) P ) |