This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The consensus theorem. This theorem and its dual (with \/ and /\ interchanged) are commonly used in computer logic design to eliminate redundant terms from Boolean expressions. Specifically, we prove that the term ( ps /\ ch ) on the left-hand side is redundant. (Contributed by NM, 16-May-2003) (Proof shortened by Andrew Salmon, 13-May-2011) (Proof shortened by Wolf Lammen, 20-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | consensus | |- ( ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) \/ ( ps /\ ch ) ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
|
| 2 | orc | |- ( ( ph /\ ps ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
|
| 3 | 2 | adantrr | |- ( ( ph /\ ( ps /\ ch ) ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
| 4 | olc | |- ( ( -. ph /\ ch ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
|
| 5 | 4 | adantrl | |- ( ( -. ph /\ ( ps /\ ch ) ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
| 6 | 3 5 | pm2.61ian | |- ( ( ps /\ ch ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
| 7 | 1 6 | jaoi | |- ( ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) \/ ( ps /\ ch ) ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
| 8 | orc | |- ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) -> ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) \/ ( ps /\ ch ) ) ) |
|
| 9 | 7 8 | impbii | |- ( ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) \/ ( ps /\ ch ) ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |