This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The curried first projection function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmptk1.j | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| cnmptk1.k | |- ( ph -> K e. ( TopOn ` Y ) ) |
||
| Assertion | cnmptkc | |- ( ph -> ( x e. X |-> ( y e. Y |-> x ) ) e. ( J Cn ( J ^ko K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptk1.j | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 2 | cnmptk1.k | |- ( ph -> K e. ( TopOn ` Y ) ) |
|
| 3 | fconstmpt | |- ( Y X. { x } ) = ( y e. Y |-> x ) |
|
| 4 | 3 | mpteq2i | |- ( x e. X |-> ( Y X. { x } ) ) = ( x e. X |-> ( y e. Y |-> x ) ) |
| 5 | xkoccn | |- ( ( K e. ( TopOn ` Y ) /\ J e. ( TopOn ` X ) ) -> ( x e. X |-> ( Y X. { x } ) ) e. ( J Cn ( J ^ko K ) ) ) |
|
| 6 | 2 1 5 | syl2anc | |- ( ph -> ( x e. X |-> ( Y X. { x } ) ) e. ( J Cn ( J ^ko K ) ) ) |
| 7 | 4 6 | eqeltrrid | |- ( ph -> ( x e. X |-> ( y e. Y |-> x ) ) e. ( J Cn ( J ^ko K ) ) ) |