This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a class X has at least one element in its closed neighborhood, this class must be a vertex. (Contributed by AV, 7-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clnbgrcl.v | |- V = ( Vtx ` G ) |
|
| Assertion | clnbgrcl | |- ( N e. ( G ClNeighbVtx X ) -> X e. V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrcl.v | |- V = ( Vtx ` G ) |
|
| 2 | df-clnbgr | |- ClNeighbVtx = ( g e. _V , v e. ( Vtx ` g ) |-> ( { v } u. { n e. ( Vtx ` g ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) ) |
|
| 3 | 2 | mpoxeldm | |- ( N e. ( G ClNeighbVtx X ) -> ( G e. _V /\ X e. [_ G / g ]_ ( Vtx ` g ) ) ) |
| 4 | csbfv | |- [_ G / g ]_ ( Vtx ` g ) = ( Vtx ` G ) |
|
| 5 | 4 1 | eqtr4i | |- [_ G / g ]_ ( Vtx ` g ) = V |
| 6 | 5 | eleq2i | |- ( X e. [_ G / g ]_ ( Vtx ` g ) <-> X e. V ) |
| 7 | 6 | biimpi | |- ( X e. [_ G / g ]_ ( Vtx ` g ) -> X e. V ) |
| 8 | 3 7 | simpl2im | |- ( N e. ( G ClNeighbVtx X ) -> X e. V ) |