This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of elements of A "such that A is a set" is a set. That class is equal to A when A is a set (see class2seteq ) and to the empty set when A is a proper class. (Contributed by NM, 16-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | class2set | |- { x e. A | A e. _V } e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabexg | |- ( A e. _V -> { x e. A | A e. _V } e. _V ) |
|
| 2 | simpl | |- ( ( -. A e. _V /\ x e. A ) -> -. A e. _V ) |
|
| 3 | 2 | nrexdv | |- ( -. A e. _V -> -. E. x e. A A e. _V ) |
| 4 | rabn0 | |- ( { x e. A | A e. _V } =/= (/) <-> E. x e. A A e. _V ) |
|
| 5 | 4 | necon1bbii | |- ( -. E. x e. A A e. _V <-> { x e. A | A e. _V } = (/) ) |
| 6 | 3 5 | sylib | |- ( -. A e. _V -> { x e. A | A e. _V } = (/) ) |
| 7 | 0ex | |- (/) e. _V |
|
| 8 | 6 7 | eqeltrdi | |- ( -. A e. _V -> { x e. A | A e. _V } e. _V ) |
| 9 | 1 8 | pm2.61i | |- { x e. A | A e. _V } e. _V |