This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Meet with Hilbert lattice zero. (Contributed by NM, 6-Aug-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ch0le.1 | |- A e. CH |
|
| Assertion | chm0i | |- ( A i^i 0H ) = 0H |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | |- A e. CH |
|
| 2 | inss2 | |- ( A i^i 0H ) C_ 0H |
|
| 3 | 1 | ch0lei | |- 0H C_ A |
| 4 | ssid | |- 0H C_ 0H |
|
| 5 | 3 4 | ssini | |- 0H C_ ( A i^i 0H ) |
| 6 | 2 5 | eqssi | |- ( A i^i 0H ) = 0H |