This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Celarent", one of the syllogisms of Aristotelian logic. No ph is ps , and all ch is ph , therefore no ch is ps . Instance of barbara . In Aristotelian notation, EAE-1: MeP and SaM therefore SeP. For example, given the "No reptiles have fur" and "All snakes are reptiles", therefore "No snakes have fur". Example from https://en.wikipedia.org/wiki/Syllogism . (Contributed by David A. Wheeler, 24-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | celarent.maj | |- A. x ( ph -> -. ps ) |
|
| celarent.min | |- A. x ( ch -> ph ) |
||
| Assertion | celarent | |- A. x ( ch -> -. ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | celarent.maj | |- A. x ( ph -> -. ps ) |
|
| 2 | celarent.min | |- A. x ( ch -> ph ) |
|
| 3 | 1 2 | barbara | |- A. x ( ch -> -. ps ) |