This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ceiling of a real number is greater than or equal to that number. (Contributed by Jeff Hankins, 10-Jun-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ceige | |- ( A e. RR -> A <_ -u ( |_ ` -u A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 2 | reflcl | |- ( -u A e. RR -> ( |_ ` -u A ) e. RR ) |
|
| 3 | 1 2 | syl | |- ( A e. RR -> ( |_ ` -u A ) e. RR ) |
| 4 | flle | |- ( -u A e. RR -> ( |_ ` -u A ) <_ -u A ) |
|
| 5 | 1 4 | syl | |- ( A e. RR -> ( |_ ` -u A ) <_ -u A ) |
| 6 | 5 | adantr | |- ( ( A e. RR /\ ( |_ ` -u A ) e. RR ) -> ( |_ ` -u A ) <_ -u A ) |
| 7 | lenegcon2 | |- ( ( A e. RR /\ ( |_ ` -u A ) e. RR ) -> ( A <_ -u ( |_ ` -u A ) <-> ( |_ ` -u A ) <_ -u A ) ) |
|
| 8 | 6 7 | mpbird | |- ( ( A e. RR /\ ( |_ ` -u A ) e. RR ) -> A <_ -u ( |_ ` -u A ) ) |
| 9 | 3 8 | mpdan | |- ( A e. RR -> A <_ -u ( |_ ` -u A ) ) |