This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the bound variable (i.e. the substituted one) in wff's linked by implicit substitution. The proof was part of a former cbvabw version. (Contributed by GG and WL, 26-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvsbvf.1 | |- F/ y ph |
|
| cbvsbvf.2 | |- F/ x ps |
||
| cbvsbvf.3 | |- ( x = y -> ( ph <-> ps ) ) |
||
| Assertion | cbvsbvf | |- ( [ z / x ] ph <-> [ z / y ] ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvsbvf.1 | |- F/ y ph |
|
| 2 | cbvsbvf.2 | |- F/ x ps |
|
| 3 | cbvsbvf.3 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 4 | nfv | |- F/ y x = w |
|
| 5 | 4 1 | nfim | |- F/ y ( x = w -> ph ) |
| 6 | nfv | |- F/ x y = w |
|
| 7 | 6 2 | nfim | |- F/ x ( y = w -> ps ) |
| 8 | equequ1 | |- ( x = y -> ( x = w <-> y = w ) ) |
|
| 9 | 8 3 | imbi12d | |- ( x = y -> ( ( x = w -> ph ) <-> ( y = w -> ps ) ) ) |
| 10 | 5 7 9 | cbvalv1 | |- ( A. x ( x = w -> ph ) <-> A. y ( y = w -> ps ) ) |
| 11 | 10 | imbi2i | |- ( ( w = z -> A. x ( x = w -> ph ) ) <-> ( w = z -> A. y ( y = w -> ps ) ) ) |
| 12 | 11 | albii | |- ( A. w ( w = z -> A. x ( x = w -> ph ) ) <-> A. w ( w = z -> A. y ( y = w -> ps ) ) ) |
| 13 | dfsb | |- ( [ z / x ] ph <-> A. w ( w = z -> A. x ( x = w -> ph ) ) ) |
|
| 14 | dfsb | |- ( [ z / y ] ps <-> A. w ( w = z -> A. y ( y = w -> ps ) ) ) |
|
| 15 | 12 13 14 | 3bitr4i | |- ( [ z / x ] ph <-> [ z / y ] ps ) |