This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvralfw when possible. (Contributed by NM, 7-Mar-2004) (Revised by Mario Carneiro, 9-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvralf.1 | |- F/_ x A |
|
| cbvralf.2 | |- F/_ y A |
||
| cbvralf.3 | |- F/ y ph |
||
| cbvralf.4 | |- F/ x ps |
||
| cbvralf.5 | |- ( x = y -> ( ph <-> ps ) ) |
||
| Assertion | cbvralf | |- ( A. x e. A ph <-> A. y e. A ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvralf.1 | |- F/_ x A |
|
| 2 | cbvralf.2 | |- F/_ y A |
|
| 3 | cbvralf.3 | |- F/ y ph |
|
| 4 | cbvralf.4 | |- F/ x ps |
|
| 5 | cbvralf.5 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 6 | nfv | |- F/ z ( x e. A -> ph ) |
|
| 7 | 1 | nfcri | |- F/ x z e. A |
| 8 | nfs1v | |- F/ x [ z / x ] ph |
|
| 9 | 7 8 | nfim | |- F/ x ( z e. A -> [ z / x ] ph ) |
| 10 | eleq1w | |- ( x = z -> ( x e. A <-> z e. A ) ) |
|
| 11 | sbequ12 | |- ( x = z -> ( ph <-> [ z / x ] ph ) ) |
|
| 12 | 10 11 | imbi12d | |- ( x = z -> ( ( x e. A -> ph ) <-> ( z e. A -> [ z / x ] ph ) ) ) |
| 13 | 6 9 12 | cbvalv1 | |- ( A. x ( x e. A -> ph ) <-> A. z ( z e. A -> [ z / x ] ph ) ) |
| 14 | 2 | nfcri | |- F/ y z e. A |
| 15 | 3 | nfsb | |- F/ y [ z / x ] ph |
| 16 | 14 15 | nfim | |- F/ y ( z e. A -> [ z / x ] ph ) |
| 17 | nfv | |- F/ z ( y e. A -> ps ) |
|
| 18 | eleq1w | |- ( z = y -> ( z e. A <-> y e. A ) ) |
|
| 19 | sbequ | |- ( z = y -> ( [ z / x ] ph <-> [ y / x ] ph ) ) |
|
| 20 | 4 5 | sbie | |- ( [ y / x ] ph <-> ps ) |
| 21 | 19 20 | bitrdi | |- ( z = y -> ( [ z / x ] ph <-> ps ) ) |
| 22 | 18 21 | imbi12d | |- ( z = y -> ( ( z e. A -> [ z / x ] ph ) <-> ( y e. A -> ps ) ) ) |
| 23 | 16 17 22 | cbvalv1 | |- ( A. z ( z e. A -> [ z / x ] ph ) <-> A. y ( y e. A -> ps ) ) |
| 24 | 13 23 | bitri | |- ( A. x ( x e. A -> ph ) <-> A. y ( y e. A -> ps ) ) |
| 25 | df-ral | |- ( A. x e. A ph <-> A. x ( x e. A -> ph ) ) |
|
| 26 | df-ral | |- ( A. y e. A ps <-> A. y ( y e. A -> ps ) ) |
|
| 27 | 24 25 26 | 3bitr4i | |- ( A. x e. A ph <-> A. y e. A ps ) |