This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change bound variables in a description binder. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbviotaw when possible. (Contributed by Andrew Salmon, 1-Aug-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbviota.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| cbviota.2 | |- F/ y ph |
||
| cbviota.3 | |- F/ x ps |
||
| Assertion | cbviota | |- ( iota x ph ) = ( iota y ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviota.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 2 | cbviota.2 | |- F/ y ph |
|
| 3 | cbviota.3 | |- F/ x ps |
|
| 4 | nfv | |- F/ z ( ph <-> x = w ) |
|
| 5 | nfs1v | |- F/ x [ z / x ] ph |
|
| 6 | nfv | |- F/ x z = w |
|
| 7 | 5 6 | nfbi | |- F/ x ( [ z / x ] ph <-> z = w ) |
| 8 | sbequ12 | |- ( x = z -> ( ph <-> [ z / x ] ph ) ) |
|
| 9 | equequ1 | |- ( x = z -> ( x = w <-> z = w ) ) |
|
| 10 | 8 9 | bibi12d | |- ( x = z -> ( ( ph <-> x = w ) <-> ( [ z / x ] ph <-> z = w ) ) ) |
| 11 | 4 7 10 | cbvalv1 | |- ( A. x ( ph <-> x = w ) <-> A. z ( [ z / x ] ph <-> z = w ) ) |
| 12 | 2 | nfsb | |- F/ y [ z / x ] ph |
| 13 | nfv | |- F/ y z = w |
|
| 14 | 12 13 | nfbi | |- F/ y ( [ z / x ] ph <-> z = w ) |
| 15 | nfv | |- F/ z ( ps <-> y = w ) |
|
| 16 | sbequ | |- ( z = y -> ( [ z / x ] ph <-> [ y / x ] ph ) ) |
|
| 17 | 3 1 | sbie | |- ( [ y / x ] ph <-> ps ) |
| 18 | 16 17 | bitrdi | |- ( z = y -> ( [ z / x ] ph <-> ps ) ) |
| 19 | equequ1 | |- ( z = y -> ( z = w <-> y = w ) ) |
|
| 20 | 18 19 | bibi12d | |- ( z = y -> ( ( [ z / x ] ph <-> z = w ) <-> ( ps <-> y = w ) ) ) |
| 21 | 14 15 20 | cbvalv1 | |- ( A. z ( [ z / x ] ph <-> z = w ) <-> A. y ( ps <-> y = w ) ) |
| 22 | 11 21 | bitri | |- ( A. x ( ph <-> x = w ) <-> A. y ( ps <-> y = w ) ) |
| 23 | 22 | abbii | |- { w | A. x ( ph <-> x = w ) } = { w | A. y ( ps <-> y = w ) } |
| 24 | 23 | unieqi | |- U. { w | A. x ( ph <-> x = w ) } = U. { w | A. y ( ps <-> y = w ) } |
| 25 | dfiota2 | |- ( iota x ph ) = U. { w | A. x ( ph <-> x = w ) } |
|
| 26 | dfiota2 | |- ( iota y ps ) = U. { w | A. y ( ps <-> y = w ) } |
|
| 27 | 24 25 26 | 3eqtr4i | |- ( iota x ph ) = ( iota y ps ) |