This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvex2vw if possible. (Contributed by NM, 26-Jul-1995) Remove dependency on ax-10 . (Revised by Wolf Lammen, 18-Jul-2021) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cbval2vv.1 | |- ( ( x = z /\ y = w ) -> ( ph <-> ps ) ) |
|
| Assertion | cbvex2vv | |- ( E. x E. y ph <-> E. z E. w ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbval2vv.1 | |- ( ( x = z /\ y = w ) -> ( ph <-> ps ) ) |
|
| 2 | 1 | cbvexdva | |- ( x = z -> ( E. y ph <-> E. w ps ) ) |
| 3 | 2 | cbvexv | |- ( E. x E. y ph <-> E. z E. w ps ) |