This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Check out cbvalw , cbvalvw , cbvalv1 for versions requiring fewer axioms. (Contributed by NM, 13-May-1993) (Revised by Mario Carneiro, 3-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbval.1 | |- F/ y ph |
|
| cbval.2 | |- F/ x ps |
||
| cbval.3 | |- ( x = y -> ( ph <-> ps ) ) |
||
| Assertion | cbval | |- ( A. x ph <-> A. y ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbval.1 | |- F/ y ph |
|
| 2 | cbval.2 | |- F/ x ps |
|
| 3 | cbval.3 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 4 | 3 | biimpd | |- ( x = y -> ( ph -> ps ) ) |
| 5 | 1 2 4 | cbv3 | |- ( A. x ph -> A. y ps ) |
| 6 | 3 | biimprd | |- ( x = y -> ( ps -> ph ) ) |
| 7 | 6 | equcoms | |- ( y = x -> ( ps -> ph ) ) |
| 8 | 2 1 7 | cbv3 | |- ( A. y ps -> A. x ph ) |
| 9 | 5 8 | impbii | |- ( A. x ph <-> A. y ps ) |